3.4.2 \(\int \text {sech}^6(c+d x) (a+b \sinh ^2(c+d x))^2 \, dx\) [302]

Optimal. Leaf size=57 \[ \frac {a^2 \tanh (c+d x)}{d}-\frac {2 a (a-b) \tanh ^3(c+d x)}{3 d}+\frac {(a-b)^2 \tanh ^5(c+d x)}{5 d} \]

[Out]

a^2*tanh(d*x+c)/d-2/3*a*(a-b)*tanh(d*x+c)^3/d+1/5*(a-b)^2*tanh(d*x+c)^5/d

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 57, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {3270, 200} \begin {gather*} \frac {a^2 \tanh (c+d x)}{d}+\frac {(a-b)^2 \tanh ^5(c+d x)}{5 d}-\frac {2 a (a-b) \tanh ^3(c+d x)}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^6*(a + b*Sinh[c + d*x]^2)^2,x]

[Out]

(a^2*Tanh[c + d*x])/d - (2*a*(a - b)*Tanh[c + d*x]^3)/(3*d) + ((a - b)^2*Tanh[c + d*x]^5)/(5*d)

Rule 200

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n)^p, x], x] /; FreeQ[{a, b}, x]
&& IGtQ[n, 0] && IGtQ[p, 0]

Rule 3270

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^(m/2 + p + 1), x], x, T
an[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]

Rubi steps

\begin {align*} \int \text {sech}^6(c+d x) \left (a+b \sinh ^2(c+d x)\right )^2 \, dx &=\frac {\text {Subst}\left (\int \left (a-(a-b) x^2\right )^2 \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {\text {Subst}\left (\int \left (a^2-2 a (a-b) x^2+(a-b)^2 x^4\right ) \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {a^2 \tanh (c+d x)}{d}-\frac {2 a (a-b) \tanh ^3(c+d x)}{3 d}+\frac {(a-b)^2 \tanh ^5(c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.32, size = 69, normalized size = 1.21 \begin {gather*} \frac {\left (8 a^2+4 a b+3 b^2+2 \left (2 a^2+a b-3 b^2\right ) \text {sech}^2(c+d x)+3 (a-b)^2 \text {sech}^4(c+d x)\right ) \tanh (c+d x)}{15 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^6*(a + b*Sinh[c + d*x]^2)^2,x]

[Out]

((8*a^2 + 4*a*b + 3*b^2 + 2*(2*a^2 + a*b - 3*b^2)*Sech[c + d*x]^2 + 3*(a - b)^2*Sech[c + d*x]^4)*Tanh[c + d*x]
)/(15*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(128\) vs. \(2(53)=106\).
time = 1.70, size = 129, normalized size = 2.26

method result size
risch \(-\frac {2 \left (15 b^{2} {\mathrm e}^{8 d x +8 c}+60 a b \,{\mathrm e}^{6 d x +6 c}+80 a^{2} {\mathrm e}^{4 d x +4 c}-20 a b \,{\mathrm e}^{4 d x +4 c}+30 b^{2} {\mathrm e}^{4 d x +4 c}+40 a^{2} {\mathrm e}^{2 d x +2 c}+20 a b \,{\mathrm e}^{2 d x +2 c}+8 a^{2}+4 a b +3 b^{2}\right )}{15 d \left (1+{\mathrm e}^{2 d x +2 c}\right )^{5}}\) \(129\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^6*(a+b*sinh(d*x+c)^2)^2,x,method=_RETURNVERBOSE)

[Out]

-2/15*(15*b^2*exp(8*d*x+8*c)+60*a*b*exp(6*d*x+6*c)+80*a^2*exp(4*d*x+4*c)-20*a*b*exp(4*d*x+4*c)+30*b^2*exp(4*d*
x+4*c)+40*a^2*exp(2*d*x+2*c)+20*a*b*exp(2*d*x+2*c)+8*a^2+4*a*b+3*b^2)/d/(1+exp(2*d*x+2*c))^5

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 698 vs. \(2 (53) = 106\).
time = 0.27, size = 698, normalized size = 12.25 \begin {gather*} \frac {16}{15} \, a^{2} {\left (\frac {5 \, e^{\left (-2 \, d x - 2 \, c\right )}}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}} + \frac {10 \, e^{\left (-4 \, d x - 4 \, c\right )}}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}} + \frac {1}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}}\right )} + \frac {8}{15} \, a b {\left (\frac {5 \, e^{\left (-2 \, d x - 2 \, c\right )}}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}} - \frac {5 \, e^{\left (-4 \, d x - 4 \, c\right )}}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}} + \frac {15 \, e^{\left (-6 \, d x - 6 \, c\right )}}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}} + \frac {1}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}}\right )} + \frac {2}{5} \, b^{2} {\left (\frac {10 \, e^{\left (-4 \, d x - 4 \, c\right )}}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}} + \frac {5 \, e^{\left (-8 \, d x - 8 \, c\right )}}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}} + \frac {1}{d {\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^6*(a+b*sinh(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

16/15*a^2*(5*e^(-2*d*x - 2*c)/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x
 - 8*c) + e^(-10*d*x - 10*c) + 1)) + 10*e^(-4*d*x - 4*c)/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(
-6*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) + 1)) + 1/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c)
 + 10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) + 1))) + 8/15*a*b*(5*e^(-2*d*x - 2*c)/(d*(5*e
^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) + 1)) -
5*e^(-4*d*x - 4*c)/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e
^(-10*d*x - 10*c) + 1)) + 15*e^(-6*d*x - 6*c)/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*
c) + 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) + 1)) + 1/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6
*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) + 1))) + 2/5*b^2*(10*e^(-4*d*x - 4*c)/(d*(5*e^(-2*d*x -
2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) + 1)) + 5*e^(-8*d*x
 - 8*c)/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e^(-10*d*x -
 10*c) + 1)) + 1/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e^(
-10*d*x - 10*c) + 1)))

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 403 vs. \(2 (53) = 106\).
time = 0.39, size = 403, normalized size = 7.07 \begin {gather*} -\frac {4 \, {\left ({\left (4 \, a^{2} + 2 \, a b + 9 \, b^{2}\right )} \cosh \left (d x + c\right )^{4} - 8 \, {\left (2 \, a^{2} + a b - 3 \, b^{2}\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (4 \, a^{2} + 2 \, a b + 9 \, b^{2}\right )} \sinh \left (d x + c\right )^{4} + 20 \, {\left (a^{2} + 2 \, a b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (4 \, a^{2} + 2 \, a b + 9 \, b^{2}\right )} \cosh \left (d x + c\right )^{2} + 10 \, a^{2} + 20 \, a b\right )} \sinh \left (d x + c\right )^{2} + 40 \, a^{2} - 10 \, a b + 15 \, b^{2} - 8 \, {\left ({\left (2 \, a^{2} + a b - 3 \, b^{2}\right )} \cosh \left (d x + c\right )^{3} + 5 \, {\left (a^{2} - a b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )\right )}}{15 \, {\left (d \cosh \left (d x + c\right )^{6} + 6 \, d \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{5} + d \sinh \left (d x + c\right )^{6} + 6 \, d \cosh \left (d x + c\right )^{4} + 3 \, {\left (5 \, d \cosh \left (d x + c\right )^{2} + 2 \, d\right )} \sinh \left (d x + c\right )^{4} + 4 \, {\left (5 \, d \cosh \left (d x + c\right )^{3} + 4 \, d \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )^{3} + 15 \, d \cosh \left (d x + c\right )^{2} + 3 \, {\left (5 \, d \cosh \left (d x + c\right )^{4} + 12 \, d \cosh \left (d x + c\right )^{2} + 5 \, d\right )} \sinh \left (d x + c\right )^{2} + 2 \, {\left (3 \, d \cosh \left (d x + c\right )^{5} + 8 \, d \cosh \left (d x + c\right )^{3} + 5 \, d \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + 10 \, d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^6*(a+b*sinh(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

-4/15*((4*a^2 + 2*a*b + 9*b^2)*cosh(d*x + c)^4 - 8*(2*a^2 + a*b - 3*b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (4*a^
2 + 2*a*b + 9*b^2)*sinh(d*x + c)^4 + 20*(a^2 + 2*a*b)*cosh(d*x + c)^2 + 2*(3*(4*a^2 + 2*a*b + 9*b^2)*cosh(d*x
+ c)^2 + 10*a^2 + 20*a*b)*sinh(d*x + c)^2 + 40*a^2 - 10*a*b + 15*b^2 - 8*((2*a^2 + a*b - 3*b^2)*cosh(d*x + c)^
3 + 5*(a^2 - a*b)*cosh(d*x + c))*sinh(d*x + c))/(d*cosh(d*x + c)^6 + 6*d*cosh(d*x + c)*sinh(d*x + c)^5 + d*sin
h(d*x + c)^6 + 6*d*cosh(d*x + c)^4 + 3*(5*d*cosh(d*x + c)^2 + 2*d)*sinh(d*x + c)^4 + 4*(5*d*cosh(d*x + c)^3 +
4*d*cosh(d*x + c))*sinh(d*x + c)^3 + 15*d*cosh(d*x + c)^2 + 3*(5*d*cosh(d*x + c)^4 + 12*d*cosh(d*x + c)^2 + 5*
d)*sinh(d*x + c)^2 + 2*(3*d*cosh(d*x + c)^5 + 8*d*cosh(d*x + c)^3 + 5*d*cosh(d*x + c))*sinh(d*x + c) + 10*d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**6*(a+b*sinh(d*x+c)**2)**2,x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 4370 deep

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 128 vs. \(2 (53) = 106\).
time = 0.44, size = 128, normalized size = 2.25 \begin {gather*} -\frac {2 \, {\left (15 \, b^{2} e^{\left (8 \, d x + 8 \, c\right )} + 60 \, a b e^{\left (6 \, d x + 6 \, c\right )} + 80 \, a^{2} e^{\left (4 \, d x + 4 \, c\right )} - 20 \, a b e^{\left (4 \, d x + 4 \, c\right )} + 30 \, b^{2} e^{\left (4 \, d x + 4 \, c\right )} + 40 \, a^{2} e^{\left (2 \, d x + 2 \, c\right )} + 20 \, a b e^{\left (2 \, d x + 2 \, c\right )} + 8 \, a^{2} + 4 \, a b + 3 \, b^{2}\right )}}{15 \, d {\left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^6*(a+b*sinh(d*x+c)^2)^2,x, algorithm="giac")

[Out]

-2/15*(15*b^2*e^(8*d*x + 8*c) + 60*a*b*e^(6*d*x + 6*c) + 80*a^2*e^(4*d*x + 4*c) - 20*a*b*e^(4*d*x + 4*c) + 30*
b^2*e^(4*d*x + 4*c) + 40*a^2*e^(2*d*x + 2*c) + 20*a*b*e^(2*d*x + 2*c) + 8*a^2 + 4*a*b + 3*b^2)/(d*(e^(2*d*x +
2*c) + 1)^5)

________________________________________________________________________________________

Mupad [B]
time = 0.86, size = 464, normalized size = 8.14 \begin {gather*} -\frac {\frac {2\,\left (8\,a^2-8\,a\,b+3\,b^2\right )}{15\,d}+\frac {2\,b^2\,{\mathrm {e}}^{4\,c+4\,d\,x}}{5\,d}+\frac {4\,b\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (2\,a-b\right )}{5\,d}}{3\,{\mathrm {e}}^{2\,c+2\,d\,x}+3\,{\mathrm {e}}^{4\,c+4\,d\,x}+{\mathrm {e}}^{6\,c+6\,d\,x}+1}-\frac {\frac {2\,b^2}{5\,d}+\frac {2\,b^2\,{\mathrm {e}}^{8\,c+8\,d\,x}}{5\,d}+\frac {4\,{\mathrm {e}}^{4\,c+4\,d\,x}\,\left (8\,a^2-8\,a\,b+3\,b^2\right )}{5\,d}+\frac {8\,b\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (2\,a-b\right )}{5\,d}+\frac {8\,b\,{\mathrm {e}}^{6\,c+6\,d\,x}\,\left (2\,a-b\right )}{5\,d}}{5\,{\mathrm {e}}^{2\,c+2\,d\,x}+10\,{\mathrm {e}}^{4\,c+4\,d\,x}+10\,{\mathrm {e}}^{6\,c+6\,d\,x}+5\,{\mathrm {e}}^{8\,c+8\,d\,x}+{\mathrm {e}}^{10\,c+10\,d\,x}+1}-\frac {\frac {2\,b\,\left (2\,a-b\right )}{5\,d}+\frac {2\,b^2\,{\mathrm {e}}^{2\,c+2\,d\,x}}{5\,d}}{2\,{\mathrm {e}}^{2\,c+2\,d\,x}+{\mathrm {e}}^{4\,c+4\,d\,x}+1}-\frac {\frac {2\,b\,\left (2\,a-b\right )}{5\,d}+\frac {2\,b^2\,{\mathrm {e}}^{6\,c+6\,d\,x}}{5\,d}+\frac {2\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (8\,a^2-8\,a\,b+3\,b^2\right )}{5\,d}+\frac {6\,b\,{\mathrm {e}}^{4\,c+4\,d\,x}\,\left (2\,a-b\right )}{5\,d}}{4\,{\mathrm {e}}^{2\,c+2\,d\,x}+6\,{\mathrm {e}}^{4\,c+4\,d\,x}+4\,{\mathrm {e}}^{6\,c+6\,d\,x}+{\mathrm {e}}^{8\,c+8\,d\,x}+1}-\frac {2\,b^2}{5\,d\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}+1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sinh(c + d*x)^2)^2/cosh(c + d*x)^6,x)

[Out]

- ((2*(8*a^2 - 8*a*b + 3*b^2))/(15*d) + (2*b^2*exp(4*c + 4*d*x))/(5*d) + (4*b*exp(2*c + 2*d*x)*(2*a - b))/(5*d
))/(3*exp(2*c + 2*d*x) + 3*exp(4*c + 4*d*x) + exp(6*c + 6*d*x) + 1) - ((2*b^2)/(5*d) + (2*b^2*exp(8*c + 8*d*x)
)/(5*d) + (4*exp(4*c + 4*d*x)*(8*a^2 - 8*a*b + 3*b^2))/(5*d) + (8*b*exp(2*c + 2*d*x)*(2*a - b))/(5*d) + (8*b*e
xp(6*c + 6*d*x)*(2*a - b))/(5*d))/(5*exp(2*c + 2*d*x) + 10*exp(4*c + 4*d*x) + 10*exp(6*c + 6*d*x) + 5*exp(8*c
+ 8*d*x) + exp(10*c + 10*d*x) + 1) - ((2*b*(2*a - b))/(5*d) + (2*b^2*exp(2*c + 2*d*x))/(5*d))/(2*exp(2*c + 2*d
*x) + exp(4*c + 4*d*x) + 1) - ((2*b*(2*a - b))/(5*d) + (2*b^2*exp(6*c + 6*d*x))/(5*d) + (2*exp(2*c + 2*d*x)*(8
*a^2 - 8*a*b + 3*b^2))/(5*d) + (6*b*exp(4*c + 4*d*x)*(2*a - b))/(5*d))/(4*exp(2*c + 2*d*x) + 6*exp(4*c + 4*d*x
) + 4*exp(6*c + 6*d*x) + exp(8*c + 8*d*x) + 1) - (2*b^2)/(5*d*(exp(2*c + 2*d*x) + 1))

________________________________________________________________________________________